Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.932
Filtrar
1.
Nature ; 619(7968): 143-150, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380764

RESUMO

Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.


Assuntos
Metabolismo Energético , Fator 15 de Diferenciação de Crescimento , Músculo Esquelético , Redução de Peso , Animais , Humanos , Camundongos , Depressores do Apetite/metabolismo , Depressores do Apetite/farmacologia , Depressores do Apetite/uso terapêutico , Restrição Calórica , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Fator 15 de Diferenciação de Crescimento/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Receptores Adrenérgicos beta/metabolismo , Redução de Peso/efeitos dos fármacos
2.
J Biol Chem ; 299(6): 104810, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172729

RESUMO

RNA sequencing (RNA-seq) is a powerful technique for understanding cellular state and dynamics. However, comprehensive transcriptomic characterization of multiple RNA-seq datasets is laborious without bioinformatics training and skills. To remove the barriers to sequence data analysis in the research community, we have developed "RNAseqChef" (RNA-seq data controller highlighting expression features), a web-based platform of systematic transcriptome analysis that can automatically detect, integrate, and visualize differentially expressed genes and their biological functions. To validate its versatile performance, we examined the pharmacological action of sulforaphane (SFN), a natural isothiocyanate, on various types of cells and mouse tissues using multiple datasets in vitro and in vivo. Notably, SFN treatment upregulated the ATF6-mediated unfolded protein response in the liver and the NRF2-mediated antioxidant response in the skeletal muscle of diet-induced obese mice. In contrast, the commonly downregulated pathways included collagen synthesis and circadian rhythms in the tissues tested. On the server of RNAseqChef, we simply evaluated and visualized all analyzing data and discovered the NRF2-independent action of SFN. Collectively, RNAseqChef provides an easy-to-use open resource that identifies context-dependent transcriptomic features and standardizes data assessment.


Assuntos
Perfilação da Expressão Gênica , Internet , Isotiocianatos , RNA-Seq , Software , Sulfóxidos , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Isotiocianatos/farmacologia , Sulfóxidos/farmacologia , RNA-Seq/métodos , RNA-Seq/normas , Especificidade de Órgãos/efeitos dos fármacos , Reprodutibilidade dos Testes , Camundongos Obesos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Antioxidantes/metabolismo , Visualização de Dados
3.
Nat Commun ; 14(1): 2779, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188705

RESUMO

Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier. Mechanistically, simultaneous modulation of the targets of harmol monoamine-oxidase B and GABA-A receptor reproduces harmol-induced mitochondrial improvements. Diet-induced pre-diabetic male mice improve their glucose tolerance, liver steatosis and insulin sensitivity after treatment with harmol. Harmol or a combination of monoamine oxidase B and GABA-A receptor modulators extend the lifespan of hermaphrodite Caenorhabditis elegans or female Drosophila melanogaster. Finally, two-year-old male and female mice treated with harmol exhibit delayed frailty onset with improved glycemia, exercise performance and strength. Our results reveal that peripheral targeting of monoamine oxidase B and GABA-A receptor, common antidepressant targets, extends healthspan through mitohormesis.


Assuntos
Envelhecimento , Antidepressivos , Harmina , Mitocôndrias , Mitofagia , Monoaminoxidase , Receptores de GABA-A , Harmina/análogos & derivados , Harmina/farmacologia , Antidepressivos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Resistência à Insulina , Intolerância à Glucose/metabolismo , Estado Pré-Diabético/metabolismo , Monoaminoxidase/metabolismo , Receptores de GABA-A/metabolismo , Longevidade/efeitos dos fármacos , Caenorhabditis elegans , Drosophila melanogaster , Fragilidade/prevenção & controle , Condicionamento Físico Animal , Modelos Animais , Masculino , Feminino , Animais , Camundongos , Fígado Gorduroso/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos
4.
Arthritis Res Ther ; 25(1): 58, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041609

RESUMO

BACKGROUND: We examined the association between levothyroxine use and longitudinal MRI biomarkers for thigh muscle mass and composition in at-risk participants for knee osteoarthritis (KOA) and their mediatory role in subsequent KOA incidence. METHODS: Using the Osteoarthritis Initiative (OAI) data, we included the thighs and corresponding knees of participants at risk but without established radiographic KOA (baseline Kellgren-Lawrence grade (KL) < 2). Levothyroxine users were defined as self-reported use at all annual follow-up visits until the 4th year and were matched with levothyroxine non-users for potential confounders (KOA risk factors, comorbidities, and relevant medications covariates) using 1:2/3 propensity score (PS) matching. Using a previously developed and validated deep learning method for thigh segmentation, we assessed the association between levothyroxine use and 4-year longitudinal changes in muscle mass, including cross-sectional area (CSA) and muscle composition biomarkers including intra-MAT (within-muscle fat), contractile percentage (non-fat muscle CSA/total muscle CSA), and specific force (force per CSA). We further assessed whether levothyroxine use is associated with an 8-year risk of standard KOA radiographic (KL ≥ 2) and symptomatic incidence (incidence of radiographic KOA and pain on most of the days in the past 12 months). Finally, using a mediation analysis, we assessed whether the association between levothyroxine use and KOA incidence is mediated via muscle changes. RESULTS: We included 1043 matched thighs/knees (266:777 levothyroxine users:non-users; average ± SD age: 61 ± 9 years, female/male: 4). Levothyroxine use was associated with decreased quadriceps CSAs (mean difference, 95%CI: - 16.06 mm2/year, - 26.70 to - 5.41) but not thigh muscles' composition (e.g., intra-MAT). Levothyroxine use was also associated with an increased 8-year risk of radiographic (hazard ratio (HR), 95%CI: 1.78, 1.15-2.75) and symptomatic KOA incidence (HR, 95%CI: 1.93, 1.19-3.13). Mediation analysis showed that a decrease in quadriceps mass (i.e., CSA) partially mediated the increased risk of KOA incidence associated with levothyroxine use. CONCLUSIONS: Our exploratory analyses suggest that levothyroxine use may be associated with loss of quadriceps muscle mass, which may also partially mediate the increased risk of subsequent KOA incidence. Study interpretation should consider underlying thyroid function as a potential confounder or effect modifier. Therefore, future studies are warranted to investigate the underlying thyroid function biomarkers for longitudinal changes in the thigh muscles.


Assuntos
Osteoartrite do Joelho , Músculo Quadríceps , Tiroxina , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores , Músculo Esquelético/efeitos dos fármacos , Osteoartrite do Joelho/complicações , Músculo Quadríceps/efeitos dos fármacos , Tiroxina/efeitos adversos , Tiroxina/uso terapêutico
6.
Cells ; 12(6)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36980269

RESUMO

Cantú syndrome (CS) is caused by the gain of function mutations in the ABCC9 and KCNJ8 genes encoding, respectively, for the sulfonylureas receptor type 2 (SUR2) and the inwardly rectifier potassium channel 6.1 (Kir6.1) of the ATP-sensitive potassium (KATP) channels. CS is a multi-organ condition with a cardiovascular phenotype, neuromuscular symptoms, and skeletal malformations. Glibenclamide has been proposed for use in CS, but even in animals, the drug is incompletely effective against severe mutations, including the Kir6.1wt/V65M. Patch-clamp experiments showed that zoledronic acid (ZOL) fully reduced the whole-cell KATP currents in bone calvaria cells from wild type (WT/WT) and heterozygous Kir6.1wt/V65MCS mice, with IC50 for ZOL block < 1 nM in each case. ZOL fully reduced KATP current in excised patches in skeletal muscle fibers in WT/WT and CS mice, with IC50 of 100 nM in each case. Interestingly, KATP currents in the bone of heterozygous SUR2wt/A478V mice were less sensitive to ZOL inhibition, showing an IC50 of ~500 nM and a slope of ~0.3. In homozygous SUR2A478V/A478V cells, ZOL failed to fully inhibit the KATP currents, causing only ~35% inhibition at 100 µM, but was responsive to glibenclamide. ZOL reduced the KATP currents in Kir6.1wt/VMCS mice in both skeletal muscle and bone cells but was not effective in the SUR2[A478V] mice fibers. These data indicate a subunit specificity of ZOL action that is important for appropriate CS therapies.


Assuntos
Músculo Esquelético , Ácido Zoledrônico , Animais , Camundongos , Trifosfato de Adenosina , Modelos Animais de Doenças , Glibureto/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Ácido Zoledrônico/farmacologia , Canais KATP/efeitos dos fármacos , Canais KATP/metabolismo , Receptores de Sulfonilureias/efeitos dos fármacos , Receptores de Sulfonilureias/metabolismo
7.
J Nutr Biochem ; 115: 109277, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739096

RESUMO

Selenomethionine (Se-Met) has many beneficial effects on higher animals and human, and can regulate cellular physiology through distinct signaling pathways. However, the role and molecular mechanism of Se-Met in skeletal muscle growth remains unclear. In this study, we observed the effects of Se-Met on C2C12 myoblasts and skeletal muscle growth of mice, and explored the corresponding molecular mechanism. Se-Met affected proliferation and protein synthesis of C2C12 myoblasts in a hormesis type of relationship, and had an optimal stimulatory effect at 50 µM concentration. Se-Met also affected mTOR, ANXA2, and PKCα phosphorylation in the same manner. ANXA2 knockdown blocked the stimulation of Se-Met on cell proliferation and protein synthesis and inhibition of Se-Met on autophagy of C2C12 myoblasts. Western blotting analysis showed that PI3K inhibition blocked the stimulation of Se-Met on mTOR phosphorylation. ANXA2 knockdown further blocked the stimulation of Se-Met on PI3K and mTOR phosphorylation. Point mutation experiment showed that ANXA2 mediated the stimulation of Se-Met on the PI3K-mTOR signaling through phosphorylation at Ser26. PKCα interacted with ANXA2, and PKCα knockdown blocked the stimulation of Se-Met on ANXA2 phosphorylation at Ser26. Se-Met addition (7.5mg/kg diet, 4 weeks) increased mouse carcass weight, promoted gastrocnemius skeletal muscle growth and ANXA2 and mTOR phosphorylation in this tissue. Collectively, our findings reveal that Se-Met can promote proliferation and protein synthesis of myoblasts and skeletal muscle growth through ANXA2 phosphorylation.


Assuntos
Anexina A2 , Músculo Esquelético , Mioblastos , Selenometionina , Animais , Humanos , Camundongos , Anexina A2/genética , Anexina A2/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/farmacologia , Selenometionina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética
8.
Femina ; 51(2): 114-119, 20230228. Ilus
Artigo em Português | LILACS | ID: biblio-1428710

RESUMO

As pílulas anticoncepcionais consistem na formulação combinada de um estrogênio e um progestagênio ou em apresentações simples de progestagênio isolado com a finalidade de bloquear a ovulação e alterar as condições do útero e das tubas uterinas, bloqueando parcialmente a foliculogênese e a inibição do pico de gonadotrofinas. Desse modo, no que concerne à temática, diversas publicações na mídia de ampla divulgação afirmam que os anticoncepcionais orais têm papel importante na sarcopenia e na hipotrofia, incluindo perda de força muscular e redução do desempenho físico. Assim, o presente trabalho tem por objetivo avaliar, por meio de pesquisas de artigos, a correlação entre anticoncepcionais hormonais orais e hipotrofia muscular. Foi concluído que os artigos científicos especializados no tema são ainda bastante inconclusivos, sugerindo que há indicações de que usuárias de anticoncepcional oral sejam mais suscetíveis ao dano muscular induzido por exercícios, contudo ainda não há consenso.


Anticonception pills consist of a combined formulation of an estrogen and a progestogen or simple presentations of progestogen alone with the purpose of blocking ovulation and altering the conditions of the uterus and uterine tubes, partially blocking folliculogenesis and inhibiting the gonadotropin peak. Thus, with regard to the subject, several widely publicized media publications claim that oral contraceptives play an important role in sarcopenia and hypotrophy, including loss of muscle strength and reduced physical performance. So, the present work aims to evaluate through article searches the correlation between oral hormonal contraceptives and muscle hypotrophy. It was concluded that scientific articles specialized on the subject are still quite inconclusive, suggesting that there are indications that oral contraceptive users are more susceptible to exercise-induced muscle damage, however there is still no consensus.


Assuntos
Humanos , Feminino , Anticoncepcionais Orais/efeitos adversos , Progestinas/efeitos adversos , Músculo Esquelético/efeitos dos fármacos , Inibição da Ovulação/efeitos dos fármacos , Desempenho Físico Funcional
9.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614292

RESUMO

The voltage-gated sodium channels represent an important target for drug discovery since a large number of physiological processes are regulated by these channels. In several excitability disorders, including epilepsy, cardiac arrhythmias, chronic pain, and non-dystrophic myotonia, blockers of voltage-gated sodium channels are clinically used. Myotonia is a skeletal muscle condition characterized by the over-excitability of the sarcolemma, resulting in delayed relaxation after contraction and muscle stiffness. The therapeutic management of this disorder relies on mexiletine and other sodium channel blockers, which are not selective for the Nav1.4 skeletal muscle sodium channel isoform. Hence, the importance of deepening the knowledge of molecular requirements for developing more potent and use-dependent drugs acting on Nav1.4. Here, we review the available treatment options for non-dystrophic myotonia and the structure-activity relationship studies performed in our laboratory with a focus on new compounds with potential antimyotonic activity.


Assuntos
Mexiletina , Miotonia , Canal de Sódio Disparado por Voltagem NAV1.4 , Bloqueadores do Canal de Sódio Disparado por Voltagem , Humanos , Mexiletina/farmacologia , Mexiletina/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Miotonia/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Síndrome , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
10.
J Cachexia Sarcopenia Muscle ; 14(1): 182-197, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36401337

RESUMO

BACKGROUND: Cisplatin (CP) is a widely used chemotherapeutic drug with subsequent adverse effects on different organs and tissues including skeletal muscle loss and atrophy as the most common clinical symptoms. The molecular mechanism of cisplatin-induced muscle atrophy is not clearly understood. However, recent significant advances indicate that it is related to an imbalance in both the protein status and apoptosis. Capsaicin (CAP) is one of the major ingredients in chilli peppers. It is a valuable pharmacological agent with several therapeutic applications in controlling pain and inflammation with particular therapeutic potential in muscle atrophy. However, the mechanisms underlying its protective effects against cisplatin-induced muscle loss and atrophy remain largely unknown. This study aims to investigate capsaicin's beneficial effects on cisplatin-induced muscle loss and atrophy in vitro and in vivo. METHODS: The anti-muscle-atrophic effect of capsaicin on cisplatin-induced muscle loss was investigated using in vivo and in vitro studies. By using the pretreatment model, pretreated capsaicin for 24 h and treated with cisplatin for 48 h, we utilized a C2 C12 myotube formation model where cell viability analysis, immunofluorescence, and protein expression were measured to investigate the effect of capsaicin in hampering cisplatin-induced muscle atrophy. C57BL/6 mice were administered capsaicin (10, 40 mg/kg BW) as a pretreatment for 5 weeks and cisplatin (3 mg/kg BW) for seven consecutively days to assess muscle atrophy in an animal model for protein and oxidative stress examination, and the grip strength was tested to evaluate the muscle strength. RESULTS: Our study results indicated that cisplatin caused lower cell viability and showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in the myotube diameter, repression of Akt, and mTOR protein expression. However, pretreatment with capsaicin could ameliorate cisplatin-induced muscle atrophy by up-regulating the protein synthesis in skeletal muscle as well as down-regulating the markers of protein degradation. Additionally, capsaicin was able to downregulate the protein expression of apoptosis-related markers, activated TRPV1 and autophagy progress modulation and the recovery of lysosome function. In vivo, capsaicin could relieve oxidative stress and cytokine secretion while modulating autophagy-related lysosome fusion, improving grip strength, and alleviating cisplatin-induced body weight loss and gastrocnemius atrophy. CONCLUSIONS: These findings suggest that capsaicin can restore cisplatin-induced imbalance between protein synthesis and protein degradation pathways and it may have protective effects against cisplatin-induced muscle atrophy.


Assuntos
Capsaicina , Cisplatino , Músculo Esquelético , Atrofia Muscular , Animais , Camundongos , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Cisplatino/efeitos adversos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo
11.
J Diet Suppl ; 20(5): 689-705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35758017

RESUMO

Sodium bicarbonate (NaHCO3) has been used as an ergogenic substance during high-intensity exercises. Therefore, the aim of the present study was to investigate the effects of NaHCO3 supplementation on external and internal load parameters during isokinetic exercise in trained subjects. Ten subjects were tested on two occasions: after ingesting 0.3 g.kg-1 of body mass of NaHCO3 or placebo. Maximum voluntary isometric contraction was performed before and after a dynamic protocol consisting of 10 series of 10 movements of flexion/extension of the knee extensors at 120° s-1 at an interval of 60 s between series. Outcomes considered were: peak torque (isokinetic dynamometry), blood lactate and creatine concentration (CK), analysis of perceptions of effort (OMNI scale), pain (visual analog scale) and recovery (scale raging 6 to 20). Performance was assessed using peak torque values. Muscle damage was assessed prior and 24 h post exercise. The subjective perceptions of effort, pain and recovery were assessed at different times and the internal load of the session was assessed 30 min post-effort. Although significant reductions in peak torque were noted both in isometric (NaHCO3:-29.11 ± 22.95%, Placebo: -23.51 ± 15.23%; p = 0.38) and isokinetic strength (NaHCO3:-23.0 ± 13.9%, Placebo:-19.6 ± 9.1%; p = 0.09), there was no effect of supplementation on performance (p > 0.05). The blood CK concentrations (NaHCO3: pre:225.3 ± 135.9 U/L, post: 418.4 ± 318.4 U/L; Placebo: pre:238 ± 94.03 U/L, post:486 ± 336.6 U/L) increased after protocol (p = 0.005), however, without differences between conditions. In conclusion, the NaHCO3 did not attribute benefits in performance or in parameters related to the internal load of exercise.


Assuntos
Suplementos Nutricionais , Músculo Esquelético , Bicarbonato de Sódio , Humanos , Estudos Cross-Over , Método Duplo-Cego , Músculo Esquelético/efeitos dos fármacos , Dor , Bicarbonato de Sódio/farmacologia , Creatina Quinase/sangue , Contração Isométrica , Ácido Láctico/sangue
12.
Steroids ; 191: 109160, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574869

RESUMO

PURPOSE: This study aimed to investigate the role of 17ß-estradiol (E2) in the repair of contusion-induced myoinjury in mice and to identify the underlying molecular mechanisms. METHODS: In vivo, contusion protocol was performed for preparing mice myoinjury model, and Injection (i.p.) of 17ß-estradiol (E2) or estrogen receptor antagonist ICI 182,780, or ovariectomy (OVX), was used to alter estrogen level of animal models. In vitro, C2C12 myoblasts were treated with H2O2 (oxidative stress inducer), SIRT1 inhibitor EX527, or aromatase inhibitor anastrozole. Serum E2 level was assessed by enzyme-linked immunosorbent assay (ELISA). Muscle damage repair was evaluated by H&E staining and the activities of serum creatine kinase (CK) and lactate dehydrogenase (LDH). The oxidative stress was estimated by the levels of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). Western blot was performed to measure the protein expressions of SIRT1, PGC-1α, Nrf2, and HO-1. RESULTS: We observed the elevated serum E2 levels and the upregulated oxidative stress in damaged muscle in female mice after contusion-induction. The E2 administration in vivo alleviated contusion-induced myoinjury in OVX mice by reducing CK and LDH activities, suppressing oxidative stress, and enhancing the expression levels of SIRT1, PGC-1α, Nrf2, and HO-1. These effects were inhibited by treatment with an ERα/ß antagonist. Moreover, EX527 or anastrozole treatment exacerbated H2O2-induced growth inhibition and oxidative stress, and expression downregulation of SIRT1, PGC-1α, Nrf2, and HO-1 in C2C12 cells in vitro. CONCLUSION: Our results suggest that E2 is a positive intervention factor for muscle repair followed contusion-induced myoinjury, through its effects on suppressing oxidative stress via activating the SIRT1/PGC-1α/Nrf2 pathway.


Assuntos
Contusões , Estradiol , Músculo Esquelético , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sirtuína 1 , Animais , Feminino , Camundongos , Anastrozol/farmacologia , Anastrozol/uso terapêutico , Contusões/tratamento farmacológico , Modelos Animais de Doenças , Estradiol/farmacologia , Estradiol/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
13.
PLoS One ; 17(12): e0279261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36548359

RESUMO

Sodium Fluoride (NaF) can change the expression of skeletal muscle proteins. Since skeletal muscle is rich in mitochondrial and contractile (sarcomeric) proteins, these proteins are sensitive to the effects of NaF, and the changes are dose-and time-dependent. In the current study, we have analysed the effect of high concentrations of NaF (80ppm) on mouse skeletal muscle at two different time points, i.e., 15 days and 60 days. At the end of the experimental time, the animals were sacrificed, skeletal muscles were isolated, and proteins were extracted and subjected to bioinformatic (Mass Spectrometric) analysis. The results were analysed based on changes in different mitochondrial complexes, contractile (sarcomeric) proteins, 26S proteasome, and ubiquitin-proteasome pathway. The results showed that the mitochondrial proteins of complex I, II, III, IV and V were differentially regulated in the groups treated with 80ppm of NaF for 15 days and 60 days. The network analysis indicated more changes in mitochondrial proteins in the group treated with the higher dose for 15 days rather than 60 days. Furthermore, differential expression of (sarcomeric) proteins, downregulation of 26S proteasome subunits, and differential expression in proteins related to the ubiquitin-proteasome pathway lead to muscle atrophy. The differential expression might be due to the adaptative mechanism to counteract the deleterious effects of NaF on energy metabolism. Data are available via ProteomeXchange with identifier PXD035014.


Assuntos
Músculo Esquelético , Atrofia Muscular , Complexo de Endopeptidases do Proteassoma , Fluoreto de Sódio , Animais , Camundongos , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/metabolismo , Fluoreto de Sódio/farmacologia , Ubiquitina/metabolismo
14.
Nutrients ; 14(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297022

RESUMO

Astragalosides have been shown to enhance endurance exercise capacity in vivo and promote muscular hypertrophy in vitro. However, it remains unknown whether astragalosides supplementation can alter inflammatory response and enhance muscle recovery after damage in humans. We therefore aimed to evaluate the effect of astragalosides supplementation on muscle's intrinsic capacity to regenerate and repair itself after exercise-induced damage. Using a randomized double-blind placebo-controlled cross-over design, eleven male participants underwent 7 days of astragalosides supplementation (in total containing 4 mg of astragalosides per day) or a placebo control, following an eccentric exercise protocol. Serum blood samples and variables related to muscle function were collected prior to and immediately following the muscle damage protocol and also at 2 h, and 1, 2, 3, 5, and 7 days of the recovery period, to assess the pro-inflammatory cytokine response, the secretion of muscle regenerative factors, and muscular strength. Astragalosides supplementation reduced biomarkers of skeletal muscle damage (serum CK, LDH, and Mb), when compared to the placebo, at 1, 2, and 3 days following the muscle damage protocol. Astragalosides supplementation suppressed the secretion of IL-6 and TNF-α, whilst increasing the release of IGF-1 during the initial stages of muscle recovery. Furthermore, following astragaloside supplementation, muscular strength returned to baseline 2 days earlier than the placebo. Astragalosides supplementation shortens the duration of inflammation, enhances the regeneration process and restores muscle strength following eccentric exercise-induced injury.


Assuntos
Exercício Físico , Músculo Esquelético , Saponinas , Triterpenos , Humanos , Masculino , Biomarcadores , Citocinas , Suplementos Nutricionais , Método Duplo-Cego , Fator de Crescimento Insulin-Like I , Interleucina-6 , Músculo Esquelético/efeitos dos fármacos , Mialgia , Fator de Necrose Tumoral alfa/farmacologia , Exercício Físico/efeitos adversos , Triterpenos/farmacologia , Saponinas/farmacologia , Estudos Cross-Over
15.
Pharm Biol ; 60(1): 2098-2109, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269032

RESUMO

CONTEXT: Gu-Shu-Kang (GSK) is a clinical traditional Chinese medicine prescription for the treatment of primary osteoporosis. OBJECTIVE: This study investigates the protection of GSK against dexamethasone (Dex)-induced disturbance of musculoskeletal system in male mice and to identify the underlying mechanism. MATERIALS AND METHODS: Male C57BL/6 mice in Dex-treated groups were orally administered (i.g.) with vehicle, low dose (0.38 g/kg), middle dose (0.76 g/kg), or high dose (1.52 g/kg) of GSK for 8 weeks. A control group was designed without any treatment. The quadriceps femoris, tibialis anterior and gastrocnemius were harvested. Molecular expression was determined by RT-PCR and immunoblotting. RESULTS: Treatment with GSK enhanced weight-loaded swimming time (from 411.7 ± 58.4 s in Dex group to 771.4 ± 87.3 s in GSK-M) and grip strength (from 357.8 ± 23.9 g in Dex group to 880.3 ± 47.6 g in GSK-M). GSK produced a rise in cross-sectional area of myofibers and promoted a switching of glycolytic-to-oxidative myofiber. The administration with GSK affected expression of muscle regulatory factors shown by the down-regulation in MuRF-1 and atrogin-1 and the up-regulation in myogenic differentiation factor (MyoD) and myosin heavy chain (MHC). GSK stimulated tissue IGF-1 signalling pathway (IGF-1R/PI3K/Akt), not only in skeletal muscle but also in bone associated with the amelioration of trabecular bone mineral density and the improvement of osteogenesis. CONCLUSIONS: These findings revealed the potential mechanisms involved in the beneficial effects of Gu-Shu-Kang on musculoskeletal system in mice with challenging to dexamethasone, and this prescription may have applications in management for muscle atrophy and osteoporosis triggered by glucocorticoid.


Assuntos
Medicamentos de Ervas Chinesas , Glucocorticoides , Músculo Esquelético , Animais , Masculino , Camundongos , Dexametasona/efeitos adversos , Glucocorticoides/efeitos adversos , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
16.
J Agric Food Chem ; 70(25): 7704-7715, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35708276

RESUMO

Sesamin, a major lignin mainly found in sesame (Sesamum indicum) oil and sesame seeds, has been demonstrated to possess lipoclasis-promoting, antiobesity, and antidiabetic effects. Irisin is a newly discovered myokine that has attracted great interest as a key target to prevent/treat obesity and its related metabolic diseases. However, the effect and potential mechanism of sesamin on FNDC5/irisin are still vacant. In this study, we showed that sesamin treatment increased FNDC5/irisin activation and regulated SIRT1, PGC-1α, and p-SMAD3/SMAD3 expression in C2C12 cells. By using specific inhibitors and lentivirus in C2C12 cells, we found that the SIRT1/SMAD3 axis plays an important role in sesamin regulated FNDC5/irisin activation. We also found that sesamin treatment activated FNDC5 expression and regulated the SIRT1/SMAD3 signaling axis in mice's skeletal muscle. What is more, by the high-fat diet induced obese model, we further showed that sesamin improved the high-fat diet induced decrease in irisin production and secretion, which results in an improvement of body weight gain and skeletal muscle dysfunction. Our results suggested that sesamin could activate FNDC5 expression and stimulate irisin secretion through the SIRT1 pathway both in vitro and in vivo, which may provide a new strategy for preventing and improving irisin deficiency related diseases.


Assuntos
Dioxóis , Fibronectinas , Lignanas , Músculo Esquelético , Sirtuína 1 , Animais , Dioxóis/farmacologia , Fibronectinas/genética , Fibronectinas/metabolismo , Lignanas/farmacologia , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/genética , Sirtuína 1/metabolismo
17.
J Clin Endocrinol Metab ; 107(8): e3254-e3263, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35532889

RESUMO

CONTEXT: Effects of testosterone on integrated muscle protein metabolism and muscle mass during energy deficit are undetermined. OBJECTIVE: The objective was to determine the effects of testosterone on mixed-muscle protein synthesis (MPS), proteome-wide fractional synthesis rates (FSR), and skeletal muscle mass during energy deficit. DESIGN: This was a randomized, double-blind, placebo-controlled trial. SETTING: The study was conducted at Pennington Biomedical Research Center. PARTICIPANTS: Fifty healthy men. INTERVENTION: The study consisted of 14 days of weight maintenance, followed by a 28-day 55% energy deficit with 200 mg testosterone enanthate (TEST, n = 24) or placebo (PLA, n = 26) weekly, and up to 42 days of ad libitum recovery feeding. MAIN OUTCOME MEASURES: Mixed-MPS and proteome-wide FSR before (Pre), during (Mid), and after (Post) the energy deficit were determined using heavy water (days 1-42) and muscle biopsies. Muscle mass was determined using the D3-creatine dilution method. RESULTS: Mixed-MPS was lower than Pre at Mid and Post (P < 0.0005), with no difference between TEST and PLA. The proportion of individual proteins with numerically higher FSR in TEST than PLA was significant by 2-tailed binomial test at Post (52/67; P < 0.05), but not Mid (32/67; P > 0.05). Muscle mass was unchanged during energy deficit but was greater in TEST than PLA during recovery (P < 0.05). CONCLUSIONS: The high proportion of individual proteins with greater FSR in TEST than PLA at Post suggests exogenous testosterone exerted a delayed but broad stimulatory effect on synthesis rates across the muscle proteome during energy deficit, resulting in muscle mass accretion during subsequent recovery.


Assuntos
Metabolismo Energético , Proteínas Musculares , Músculo Esquelético , Proteoma , Testosterona/análogos & derivados , Método Duplo-Cego , Metabolismo Energético/efeitos dos fármacos , Humanos , Masculino , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Poliésteres/metabolismo , Poliésteres/farmacologia , Proteoma/metabolismo , Testosterona/administração & dosagem , Testosterona/farmacologia
18.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563082

RESUMO

Mitochondrial function in skeletal muscle, which plays an essential role in oxidative capacity and physical activity, declines with aging. Acetic acid activates AMP-activated protein kinase (AMPK), which plays a key role in the regulation of whole-body energy by phosphorylating key metabolic enzymes in both biosynthetic and oxidative pathways and stimulates gene expression associated with slow-twitch fibers and mitochondria in skeletal muscle cells. In this study, we investigate whether long-term supplementation with acetic acid improves age-related changes in the skeletal muscle of aging rats in association with the activation of AMPK. Male Sprague Dawley (SD) rats were administered acetic acid orally from 37 to 56 weeks of age. Long-term supplementation with acetic acid decreased the expression of atrophy-related genes, such as atrogin-1, muscle RING-finger protein-1 (MuRF1), and transforming growth factor beta (TGF-ß), activated AMPK, and affected the proliferation of mitochondria and type I fiber-related molecules in muscles. The findings suggest that acetic acid exhibits an anti-aging function in the skeletal muscles of aging rats.


Assuntos
Ácido Acético , Músculo Esquelético , Proteínas Quinases Ativadas por AMP/metabolismo , Ácido Acético/metabolismo , Ácido Acético/farmacologia , Ácido Acético/uso terapêutico , Envelhecimento/metabolismo , Animais , Suplementos Nutricionais , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Mar Drugs ; 20(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35621931

RESUMO

The in vitro capacity of Ishige okamurae extract (IO) to improve impaired muscle function has been previously examined. However, the mechanism underlying IO-mediated muscle protein metabolism and the role of its component, Ishophloroglucin A (IPA), in mice with dexamethasone (Dexa)-induced muscle atrophy remains unknown. In the present study, we evaluated the effect of IO and IPA supplementation on Dexa-induced muscle atrophy by assessing muscle protein metabolism in gastrocnemius and soleus muscles of mice. IO and IPA supplementation improved the Dexa-induced decrease in muscle weight and width, leading to enhanced grip strength. In addition, IO and IPA supplementation regulated impaired protein synthesis (PI3K and Akt) or degradation (muscle-specific ubiquitin ligase muscle RING finger and atrogin-1) by modulating mRNA levels in gastrocnemius and soleus muscles. Additionally, IO and IPA upregulated mRNA levels associated with muscle growth activation (transient receptor potential vanilloid type 4 and adenosine A1 receptor) or inhibition (myostatin and sirtuin 1) in gastrocnemius and soleus muscle tissues of Dexa-induced mice. Collectively, these results suggest that IO and IO-derived IPA can regulate muscle growth through muscle protein metabolism in Dexa-induced muscle atrophy.


Assuntos
Misturas Complexas , Proteínas Musculares , Atrofia Muscular , Animais , Benzofuranos , Misturas Complexas/farmacologia , Misturas Complexas/uso terapêutico , Dexametasona/efeitos adversos , Dioxinas , Camundongos , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , RNA Mensageiro/metabolismo
20.
Methods Mol Biol ; 2442: 663-683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320552

RESUMO

Galectin-1 is a small (14.5 kDa) multifunctional protein with cell-cell and cell-ECM adhesion due to interactions with the carbohydrate recognition domain (CRD). In two types of muscular dystrophies, this lectin protein has shown therapeutic properties, including positive regulation of skeletal muscle differentiation and regeneration. Both Duchenne and limb-girdle muscular dystrophy 2B (LGMD2B) are subtypes of muscular dystrophies characterized by deficient membrane repair, muscle weakness, and eventual loss of ambulation. This chapter explains confocal techniques such as laser injury, calcium imaging, and galectin-1 localization to examine the effects of galectin-1 on membrane repair in injured LGMD2B models.


Assuntos
Galectina 1 , Distrofia Muscular do Cíngulo dos Membros , Sarcolema , Galectina 1/metabolismo , Galectina 1/farmacologia , Galectina 1/uso terapêutico , Humanos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/tratamento farmacológico , Sarcolema/efeitos dos fármacos , Sarcolema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...